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Motivation

The top quark is a spin=1/2 fermion with charge +2/3e. It is the weak isospin partner of the bottom quark, ~40 x
heavier than its partner. It is the heaviest known fundamental particle, with m,, = 173.1 + 1.1 GeV. The top quark
is produced mostly in top-antitop pairs at the Tevatron with cross section 7.9 pb. Top quarks are also predicted to
be produced singly via the electroweak interaction. By “single” we mean that each top quark is not produced with
its antiparticle partner, but instead with a bottom quark and sometimes also a
light quark. The top quark decays into a W boson and a bottom quark almost

100% of the time.
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Study the Wtb coupling in top quark production: measure the CKM quark
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mixing matrix element |V,|, test CKM unitarity, search for anomalous lentone
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components in the Wtb coupling.

Cross section is sensitive to new physics: s-channel resonances — W', H*, Kaluza Klein excited Wy, technipion;
t-channel — flavor-changing neutral currents (¢-Z/y/g-u/c); fourth quark generation.

Higgs boson production (WH). Single top quark observation is a step towards the Higgs boson discovery.
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Summary

On March 4, 2009, the D@ Collaboration submitted a paper to Physical Review Letters announcing the
first observation of single top quark production (arXiv.org:0903.0850). We report the result here.

We present the results of a search for single top quark production in 2.3 fb™' of data at the Fermilab Tevatron
proton-antiproton collider at 1.96 TeV center-of-mass energy. The predicted cross section for this process is
3.46 £ 1.8 pb for a top quark mass of 170 GeV. Our measurement is:

o(pp — th + X, tgb + X) = 3.94 + 0.88 pb

where "tb" stands for tb + b production, and "tg" stands for tgh + #Gb production. The probability to measure
a cross section at this value or higher in the absence of signal is 2.5 x 10, corresponding to a 5.03 standard
deviation significance for the presence of signal. This is considered an unlikely enough occurrence

(1 in 4 million) that our measurement meets the standard to be called an observation of a new physics process.
The results of our analysis are illustrated in the plot below.

Dg 2.3fb™ March 2009
I

Decision Trees Pr 3.74 3% o
I

Bayesian NNs —e—i 470 338 pb
I

4.30 1998 pb

Matrix Elemtiants H

-
I

BLUE Combination F-e—i 4.16 +0.84 pb
BNN Combination  He—

I

3.94 +0.88 pb

|
L___\| Kldona}ﬂs, PRD 74, 114012 (2006) my,, = 170 GeV

L RN R
0 5 10
G (pp — th+X, tqb+X) [pb]

DZefo Detector

Fermilab Tevatron Collider

Signal Discrimination

=,
8 5=

We apply three multivariate methods to separate signal from background:

D@ 2.3 fb" D@ 2.3fb"

k-]
all channels °
=

Hidden
Nodes

P>
g

all channels

600/ to+tgb I tb+tgb I
Wijets [ Wjets [
Other Other

A00 i o

Multijets [l Multijets [l

Yield [Events/20GeV]

g

0500 200 300 400 500 .
Hy(jets,Lyv) [GeV] Jet2 Width

0.2 0.3 0.4

Boosted Decision Trees. A decision tree applies sequential cuts to the events but does not reject events that fail
the cuts. Boosting averages the results over many trees and improves the performance by about 20%.

Best Variables to Separate Bayesian Neural Networks. A neural Best Variables to Separate
Single Top from W+Jets network is trained on Signal and Slngle Top from Top Pairs
D@ 2.3 fb-' Analysi . o 1 :
______DO 2307 Analysis background samples to obtain weights T e AR SIS
Object kinematics #; " Object kinematics pT(notbest2)
priet2) between the network nodes. Bayesian pTlet4)
rel(jy t1,t H B
o NNs average over a large number of pTlight2)
ght1) Event kinematics M(alljets—tag1)
Event kinematics M(et1 jet2) networks to improve the performance. Centrality(alliets)
— tMT;W.) i . ) M(alljets—best1)
’(ef,;flﬁqzz)”e ) Matrix elements. This method was H (alliets—tag1)
Hillepton, ;) pioneered by D@ in the top quark mass ”T"e‘h’;‘(’"l’ljﬁ'*;"ie‘s’
Jet reconstruction Width(jet2) o SUELS
Wi dth:(jet2) measurement in a 2004 Nature paper. Jet reconstruction Width, (jet4)
Top quark reconstruction My(Witagh) It uses the 4-vectors of the lepton and x;’::ozez‘z‘;
AMmpmi" . . I o &
Moy Witag1.52) jets and the Feynman diagrams to Angular cormelations O 18P0y
Arouarcordiatens - coslgt ePoluman | compute an event probability density Q(.aef,?:n,ip,f('f;:;f: )
epton, £, .
Q(lepton) x night1) for the signal and background hypotheses. AR(et1 jet2)

Signals, Backgrounds, Data

t-channel tgb t-channel tgb

1400

lepton 12005 lepton
— bfromt F = bfromt
— other b 1000 — other b
= light ¢ g0 = lightq

600 [
400 |-

200 &

= TR
0 20 40 60 80 100 120 140 160 180 200 % s 2 a0 T3 4 s

s-channel signal t-channel signal

Transverse Momentum pr [GeV] Pseudorapidity x Lepton Charge nx Q

Single top signature: one isolated high transverse momentum lepton (electron or muon), and missing transverse
energy, which combined indicate the decay of a W boson (from the top quark decay), and two, three, or four jets.
One or two of the jets must be identified as coming from a b decay (“tagged”). The jets may be in any part of the
calorimeter (not just the central region), see the kinematics of the t-channel signal in the plot above.

Backgrounds: W+jets events, top pairs, multijets, and smaller contributions from Z+jets and dibosons.

Data: 2.3 fb . The analysis uses an OR of all reasonable triggers to select the data, which has ~100% efficiency.
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Event Yields

Before b-tagging, we have 114,777 data events, with a predicted

signal content of 444 events (s-channel + t-channel combined). This E - DG 2.3 fb” tb P Z;Z ;
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We check the distributions of about 160 variables in every analysis channel before and after b-tagging to confirm
good data-background agreement. We define two cross-check datasets that contain mostly W+jets events and
mostly top quark pairs, so that we can independently test their shapes and normalizations. Satisfactory agreement
is found in all variables, with example plots shown above. Below, we show the output from the final combination
discriminant (BDT for pretagged events) on these cross-check datasets.
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We use ensembles of pseudo-datasets to test the performance of the discriminants — do they accurately measure
the signal cross section? The three plots above show that indeed they do.

The four plots below show the outputs from each analysis, for all channels combined. (The spikes in the high-H,
matrix elements plot are a result of summing many channels for the plot with different statistics and are nothing
to worry about.) The 24 distributions summed to create each plot are used to measure the signal cross section.
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Separate Results

We use the discriminant output distributions from each analysis channel together with the normalization and
shape systematic uncertainties to do a Bayesian binned likelihood calculation. We assume a flat non-negative
prior for the signal cross section; the posterior density distributions are shown below. The position of the peak
gives the measured cross section and the width for 68% area around the peak gives the uncertainty.
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To determine the significance of the signal, we use a very large ensemble of pseudo-datasets containing
background events only, no signal events, and measure how often the cross section fluctuates above the
measured value. The plots below show the results of this measurement for each discriminant method.
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Conclusions

We have measured the single top quark production cross section using 2.3 fb™' of data at the D@ experiment. The
cross section for the combined #b+1gb channels is 3.94 + 0.88 pb, as shown in the posterior plot and table below.
We use this result to obtain an improved direct measurement of the amplitude of the CKM quark mixing matrix
element, IV, | > 0.78 at the 95% CL.
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The measured single top quark signal corresponds to an excess over the predicted background with a p-value of
25%107, equivalent to a 5.03 ¢ significance — this is the first observation of single top quark production!
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The Cabibbo-Kobayashi-Maskawa matrix describes the mixing between quarks to get from the strong-interaction
eigenstates to the weak-interaction ones (see above). The single top quark production cross section is proportional
to IthI2 and can thus be used to measure the amplitude of V,,. We assume the standard model for top quark decay
and that the Wb coupling is left-handed and CP-conserving. We do not assume there are exactly three quark
generations. The plots below show our results, first for when the strength of the left-handed scalar coupling f,“

is not constrained, and second for when it is set equal to one.

> [ o F
= _ = r -1
® f D@ 2.3 fb™ — ® DO 2.3fb
s o0 Additional S 4
a | Systematic Uncertainties e r
2 I v, fL| —1.07 £0.12 for the |V,,| Measurement 2 b
g 1ok = e s o |Vis| > 0.78
g DG 2.3 fb! 5 L
e [ flat prior = 0 For the tb+tgb theory cross section o 2
[ F at 95% CL
0.5 Top quark mass 4.2% = 0 <flat prior <1
[ Parton distribution functions 3.0% 1=
i Factorization scale 2.4% E 95% 68%
L Lo L & . & L L L 1 L L L
05 1 15 2 25 3 Strong coupling a 0.5% % 02 0.4 0.6 08 "~ 1
L2
[Veofrl 7




